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●

summary

The following report has been prepared for publication

by the.National Advisory Committee for Aeronautics. Suitable

locations of orifices for the measurement of pressure ciistri- . -

butions have been discussed. Tables are given for quickly

laying out these looations and for quickly and easily comput- .

ing the resultant air forces from the result of the measure-

ments.

Introduction

For many aeronautical problems, the mechanical interac-

tion between adjacent particles of air or between particles

of air and an adjacent rigid boundary can be assumed exactly

enough to be a pressure. This means that the three shear

components become zero, and that the three remaining compres-

sion components become equal to a pressure, say pi The phys-

ical dinension of a pressure is =, and sinoe with a

pure,and genuine pressure the force is always directed at

right angle to its reference area, a pressure cannot be said
<—-.
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to have or to occupy any specific direction - it is not a
#

“vector.II

The pressure of moving air is generally different at dif-

ferent points. It has to be realize~ that the pressure now

under discussion really exists; it is the m%al force per

unit area “Oetweerl adjacent particles. There is, however, no

method lmown to measuro an absolute pressure as such. Only

the difference between two pressures can be measured. It iS,

therefore, nccesfiaryto establish a standard pressure before

entering into the discussion of any numerical relation. Such

standard or zero pressure is chosen differently in different

czseg. When discussing heavier-than-air craft (neglecting any

buoyancy of the air) it is customary and most convenient to

consider as zero pressure the pressure of the atmosphere at

the same altitude, when at rest, that is,,in absence of the

airplane and of any wind. This standard pressure is not con-

stant under the ordinary assu~tions of mechanics, but is dif-

ferent at different al~itudes. On the other hand, when dis-

cussing the buoyancy of air as with airships, the variation
A

-of the pressure of resting air is of greatest importance and

the standard pressure “hasto be chosen otherwise.

In tke following, medenote as pressure the difference

between the actual pressure at any point aridthe standard pres-

sure as defined above- This actual prsssure, constituting the

interaction between adjacent particles is often called “:tatic
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pressure.:t Actual pressure and static pressure are identically
$’

the same.

Near the surfaces of solids moving through air, the shear
.

forces between adjacent particles are particularly large, but

they c$m still be prac~ically neglected in sa far as the com-

pressive strese of the air can be assumed the same at a spe-

cific point in whatever direction of the reference plane.

We assume the existence of a pressure distribution, of a dis-
.

tribution of actual or static pressure, over the surface of an

a’ircraftor of a,portion thereof. Tho present discussion rc- “

lates to the mcasuromcnt of this pressure distribution by

means of small orifices, distributed over the surface under

investigation. Each orifice is corcnectedto a manometrical

device. It is assumed that the pressure at the orifice is not

affected by the presence of the orifice, and that the pressure

is correctly recorded or indicated by the manometer.

If sufficient orifices are provided, the tes$ gives in-

‘formationabout the pressure distribution over the surface in-

vestigated. This information oan be made as complete as de-

sired by simply increasing the nur.berof orifices. In most

cases, the information about the pressure distribution is used

for the computation of oncor several components of tha r-

sultant air forco equivalent to the pressure distribution,

measured, This resultant air force is not always

resultant-~ir.force as the shear f6rces cannot be

.

the entire

measured by
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means of pressure orifices, and hence the resultant of the .

shear forces is not contairiedin the resultant of the pressures.

The component of the resultant air force is obtained by

projecting each surface element parallel to the component.

Each projection is then multiplied by its pressure and all

products summed up. Often the surface is olosed, and there

are always pairs of surface elements having their projection in -.

common. The contribution of such pair of surface elements is

equal to the product of tho projection and of the differcmcc

of the pressures of the two surface olcments. This difference

or sum of pressure of a group of surface elements situated at ..

a straight line parallel to the component of resultant force

will be called resultatitpressure. A resultant pressuze “&s

the same dinension as an ordinary pressure =. It is,

however, distinOaished by a direction, the direction of the

component of the resultant force. Hence the resultant pressure

is a vector.

General Considerations Governing the Spacing of the

Pressure Orifices

I nroceed to discuss those problems connected with pres-

sure distribution’measurementsthat are specially related’to

the chief purpose of such measurements, namely, the determina-

tion of the resultant air force. These problems,are chiefly

of a ~mathematicalcharacter and indeed very attractive to the
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speculative mind. They subordinate themselves to tie two prac-

a) How should the pressure holes be distributed?

b) How can the recultant force be conveniently obtained

from the observed pre~sure~?

The second question is independent of the first one. In

rcsnycases, the test= are prepared without giving full thaught .:

to the mode of distributing the pressure hoie~, or, a syste-

matic and well-propoz%ioncd distribution cannot be used on ac-
, —.

count of detail~ of the structural arrangement of the aircraft.

The choice cf the distribution of the pre=sure holes, on the

other hand, should he taken so as (a) to obtain the most ex-

act resultant air fo~ce with a given num’aerof holes, (b) to

require’the least number of orifices for a desired degree of

exactness, (C) to be able to determine the integral with the

least possible amount of time and labor, and of errors involved

@ the method of computation; all that as far as can be done

practically.

When choosing tile distribution of the pressure holes there

should also be taken into account tho type of pressure distri-”

bution to be e~ccted if mch prcwious knowlcdgb exists. For

the areas of high resultant pressure contribute comparatively

much to tileresulta~~tair force, and si-ncefurther the errors

of the instruments and the slcpe of the ~ressure curves are

large within such ran~e, the pressure kolss should be spaced
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% clcser at such regions in order to obtain the greatest exactness

of the integral. (lthe~ise spoken, the messure holes ~Y hav8

a different !Iweight,‘tto borrow an expression from the calculus
—

of probability. The allotment of these w~ights requires much

jut.gmcntaiwl e~e~iencc. A general discussion, not referring

to a particular distribution of the weight, is of little valu”e.

When distributing the pressure holes, the investigator

should also keep in min~ tuneend of tlheresearch, that is, to

obtain gcne~al infon~t~on on the subject enabling him to pre-

dict to some extent the pressure distribution over another ob-

ject, diff~rcnt but of similar t’ypeo It becomes always nec-

essary to select a family of curves, the presmre distribution

of which is a substitute for the p~essure distribution over
A

the entire area, and to.select a finite number of pressure

hcles along each curve to be a substitute for.the pressure dis-

4 tribution over this curve. Now,,it is often possible to spec-

ify the curves in guch a way that the pressure distribution

along them ‘oeccmesparticularly simple, or at l=st approaches

a par~icularly simple distribution. Often the points can be

so located as to form at the same time two families of curves,

, each of them with a different type of pressure .distribution,

but simpler than tineprecsure distribution along any third

m
w curve. Tt i-s,ir-pacsitilsto lay down gencxal rules for,such“\

proceedings but the irr~estigaatorwill l~~rn to follow these ‘

suggestio~s when he has become accus}omd not to overlook this.
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side of t-hepreparation of the test.

Spacing Along a Line With Constant Weight and “

Without Structural Restrictions.

“To begin with the simplest problem, I suppose for the .

present all pressure holes to have the same weight, and their

choice to be left open to the critical mind without limitation ,-.

by the StI’UCtI.ITaI arrangement of the parts of the aircraft.
*

Let further the family of curve= be chosen, and for the present,

the attention be concentrated to one curve only. Pressure holns

of equal weight are to be distributed along one curve wit-nthe

purpose of obtaining the pressure distribution or the distri-

bution of resultant pressure, but chiefly of obtaining their

integral, the resultant air force or a part of it. After what

has been said in the firs% section of this paper, it is sup-

posed t-hatthe position of each pre~sure hole is given by its

normal projection on a plane perpendicular to the desired air

fore-ecomponent. This projection of the cu~e, moreover, may

be assumed at present to be a straight line, in order to make

the discussion as simple and plain as possible.

The pressuz%sbeing determined empirically, they do not
. .

follow any simple mathematical law, ox if they do, the law is

not ‘knowntathe investigator. We have, therefore, arrived at

the Droblem to integrate a,function empirically given at a

finite n-amberof pointG and hence we resort to the so-called

.
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mechanical or numerical integration,as opposed to the integra-
6

tion by analytical methods. However, the discussion of suoh

integration as found in most,text books on mathematical analy-

sis does not strictly refer to our problem. In case of meas-

uring”a pressure distribution, there are the values of the

pressure given at a finite number of values of the abscissa

only, rather than at all points along the range of integration. .—

G.eomctricallyexpressed, a finite number of points rather than

a curve is given. Neither the complete pressure curve nor its ..

derivatives at any point is known. Even this is said too much.

It cannot even be striotly said that, at a finite number of

points the pressure is given, for the pressures observed arc

naturally distorted by expezimcntal errors., It would carry me

.

.

.

too far out of the reach of my immediate topic to dwell on the

theory of such errors, and to discuss the methods of determin-

ing the most probable errors and the most probable results of

the tests. The’methods as generally taught are directly appli-.—

cable to the determination of pressure distributions ar.dof —.

the resulting air force therefrom. ●The existence of experi+

mental errors has been mentioned here only because of its bear-

ing’on the choice of the location of the pressure holes, and
●

on the method of integrating the pressure. The integration of

the pressure has to be made in such a way that no experimental,

errors be ~iven an uixlueinfluence on the final results of the

integration. Tnc errors are dist~ibutcd in an unknown way,
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but subject to the general laws of probability. The mode of in-
*

tegration should be such that the probable errortof the inte-

gral stands in a due relation to the single error of each read-

ing. This now will be the “case,and the best results will be
.“

obtained if.each read%g enters into the process of integra-

tion with a weightias nearly equal as possible to its real

weight. This-genexal-remark will become,clearer when we pro-

ceed to the different methods worked out.

The Distributions of the ~ressure holes, on the other hand,

if systmaticqlly chosen, are based on the method of integra–

tion and hence are closely connected with the last considera-
.

t ion. All other things

pressure holes leads to

tegral, which give each.

being equal, a .gooddistribution of

such methods of obtaining the final in-

reading its proper weight.

Almost the same demands follow from the condition of small-

est errors of numerical computation. Such numerical computa-.
;

tions (if any) consist necessarily of repeated additions and

multiplications, and each single step is closely connected with

the choice of the distribution of the pressure holes. A dis-

tribution of pressure holes is poor, if it involves taking smll ._. .

differences of large quantities. The error of the resultant

force is smallest when all resultant pressures are of equal.

sign and uniforrr~ydistributed. It is in this case that the
.#- .

errors of computation should become mali-est too. .They ~ills

if all p?essures enter with nearly their true weight into the

.
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integration, not if they are first to be mul~ipliod by multi-

pliers of greatly

sign. This point

next section.

varying magnitude, or by such even varying in

of view will hmediat ely “be taken up in the

Graphical Integration

Let there now be n points, on a straight line, at which

the resultant pressure is to be measured. Let the line extend

from x = a to x=b; let the points at which the pressure

has been determined have the abscissae ‘xl to ~,. and let the

pressures at these points be denoted as ~ to pn. Suppose

for simplicity of expression that Rae pressures be plotta as

ordinates Riving n pressure points (Fig. 1].

The determination of the recultant force (for a strip of

the width= 1, say) requires two steps: (a) all pressure

points have to reconnected by a CU*WC (mentally or actually)
.

and (b) this curve has to be integrated.

Up to now it has been almost general practice to perform

these steps graphically. The pre~sure points were connected

by an arbitrary curve subjected, however, to the condition

that it appeared llsmoothllto”the artistic feeling of the drafts-

man. Analyzing this condition clo~er, it consists chiefly in

the mathematical condition that the value of the ordinate of

the curve, cf the slope of the curve, and at best of the curva-

ture shouldnot vary abruptly. Now, the last condition, though
●

.

—
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it may be in keeping with the actual pressure distribution, does .

not by itself necessarily lead to the most exact value of the
.,

integral. The graphical method in itself is not particularly

inexact. On the contrary, it canbe made as exact as desired

and as is possible in view of the errors of the pressure read-

ings by using large enough di&grams. In some cases, the graph-

ical method is the most convenient one too, in particular, i:

the spacing of the pressure holes had to be or was irregular,

and if not, many pressure distributions at the,same holes are

measured, making it otherwise necessary to work out with much

pains an inconvenient scheme of numerical integration, to be

applied a few times only. Here, then, the method of least

mental work is at the same time the method of Icast work. Even

then, however, the graphical method possesses one distinct and

important disadvantage. The curves between the pressure points,

whether actually dzawn in, or whether only the mental illustra-

tion of a mathematical process, are not known and therefore
.

arbitrary to some extent. The way of choosing them has an ap-

preciable effect on the integration. Hence if two tests are

repeated, or only the evaluation of one test, the results will

be different in general. It is not possible, or at least it

never has been worked out, to draw the connections according to
1

some standard s,cheme.

I wish to emphasize the fact that the distribution of the

pressme holes has an equal effect on the exactness of the Ye-
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ii
suit in either of t’nc-~wocases where the integration has been

made graphically or .numcrictilly.He is mistaken, therefore,

who~thinks that the intention to”integrete graphically relieves .

him from the duty to carefully select the spating of tho pre~- .
.
Sure holes. The discussion of the spacings far%”hcrbelow ro-

f ers in the same way to all tests, no matter how the resulting

pressure is intended to be determined, The choice of an un-

systematic spacing without external reasons therefore always

deserves censure. For this reason, the cases are infrequent

where a graphical integration is recomaendad. The general pro-’ -—

cedure of the graphical intcgratior.is generally known. I wish

. to tmke only one remark. It often occurs that the pressure .

curve intersects with the base line, t’hepressure being alter-

● nately positive and nc=ntive. Even then, working with the or-

dinary planimcter, it is allowed to circumscribe the pressure

area oiletime, following first the entire pressure curve and
*

closing it along the basc line.

The same remark holds true when determining mechanically

the static moment or the moment of inertia with respect to a .—

point of the base l.ino.-The instrument used is slightly dif-

ferent from an ordinary planimeter. But again the entire pres-

sure area has,to bc circumscribed, and again it is unnecessary

to split this area in parts of equal sign. Follow first the,=:

entire pressure curve and then the base line.

.

The numerical intcgmtion of the pressure in most cases and
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in some respects in all cases is superior to the graphical inte-
9

gration. There are different numerical metho,ds.a~$n, with ad-

vantages ~nd disadvantages peculiar to each of them. It is easy

to select one of them as a standard method and thus to obtain

always the same integral from the same test data. A greater

consistency.of the results and safer conclusions are gained.

Numerical Integration, Cotesiust Method .

In most cas,esthe pressure holes can be systematically

spated. Then the numerical integration is decidedly easier and

less time-absorbing than the graphical integration. It becomes’

quite unnecessary to plot the pressure readings, or at least,

if such plots are desired for illustration, they can be made

8 less exact. The mechanical integrators can be dispensed with,

and this means an immense saving in time, in labpr, in mental

strain and in annoyance. The numerical operations, taking the
.

place of operating a planimeter or a similar instrument, can be

chosen to be of the simplest kind. The multiplications can be

done exactly enough by means of p slide rule, or more convezy

5.entlyby means of a good Calculation machine; the additions

should be made with a calculation machine. It is worthy of re-

mark that these’recommendations are in keeping with the general ,.=L

development of performing technical computations. The last,*1
century was the century of graphical methods, the wages were

then low and the calculation machines bad and expensive. Now,

.



●

t

N..4.C.A.Technical Note

through the development

14 ,

calculation machines, all “that
●

has changed. The graphical methods ar”emore and more abandoned

or only reta,inedfor illustrative purposes. In its stead the

use of the calculation machine becomes prevalent. And it can

generallybe said that the calculation machine and the methods

based on its use have in qommon with other machines that which

holds generally for the replacement of hand labor by machine

labor. The graphical methods are nore ~eneral and do require

less preparation for a novel case and then require less time

and less mental work. But for a standard problem, once the

scheme for numerical computations has been worked out, the nu-

merical method is easier, less toilsome, less time-absorbing,

giving more exact results and giving uniform results, more cas- --

tiy chocked and last but not least, dots not involve any per-

sonal factor. This latter means that any one obtains the same

results from the same data, once the method has been decided

upon.

I proceed now to the discussion of the different cases.

A spacing of pressure holes, which is often found and indeed

suggests itself the most readily, is the division of the straight .-

line into equal parts. Let the number of points be n, and

hence the number of spaces be n - 1. This disagreement between —

the number of points and number of spaces destroys the unifor~

ity of the arrangement and makes the equal spacing little rcc-

omrnendable,as we shall irninediately see.
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. There lw.vcb ccn several methods devised for the nuncrical
●

integration. It is to be desired that all these methods arc in

sone way independent of the size of the ordinates. By this I

mean the following: The computation has to bc prepared by com-

puting ‘tablesof the nuncrical values used in the numerical in-

tegration. The computation of these tables is laborious, and

it is desired that such tables be made once for all, not new

ones for ~ch integration. Therefore, the procedure has to con-

sist in the combination of the ordinates with the figures of

the integration table by moans of simple algQbraic operations,

This most general case will be treated first. Afterwards I ~

shall take up certain special cases where the particular type

of the pressure distribution to be integrated will be taken

into account,. and yet the methods remain general enough ~nd

can be u:ed for all possible values of the ordinates.

An old method of numerical integration is the one of
w

, Cotesius.* He chose as curve connecting all n pressure

points the algebraic curve o’f nth degree containing all these

points. It is known that th:crealways exists one and only cme

such CU~C. , This way of connecting the points will be fcxmd

-..-

,
again farther below, when wo

tho improved r.ethodsderived,

in nind that the addition of
0

discuss the

therefrom.

expressions

method of Gauss and

Non, it rust be borne
.

of nth degree, sa~r,

* Roger COtesius, English mathematician, 1662-1716.

.
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f3 (x) =

f2 (x) =

etc., gives

Herein the

scissa, and

other hand,

Y1 =AO+AIX +A2X2 +...... ..+ Anxn

Y~ =Bo+Blx+B2@ +.... . . ..+Bnxn

a new expression of nth (0. lower) ciegreeagair.h ___

11A!! am !lB1! den9te constants, .x denotes the ab-

y the ordinate (pressures in”this case). On the

it is always possible to write down an expression

of nth degree which is zero at all poin,ts, ‘1s % ● “” ‘n

● except one, %> at which latter it assumes the m&pit-~de of

unity. Such expression can be written in the shape

(1)

.
where Ym again is

Ym = (x-xl) “(X-X2)...(x-~_l) (x-~, )...[~)~) (2)

.

Qm is the product of (n – 1) factors. At all points xl to

4 ‘n except at ~, one of the factors becomes zero, and hence

. Q(x) becor,eszero. At x= xm, Pm(x) = !?m(xm) and hence

fm(‘~) becomes 1. (1) iS thezefore the desired expression of

the nth degree, for it will be realized that fm(xm) XS a

constant. Hence the polynomial expressing the curve of nth

degree through all points can be written

F =flyl+f=y~+ ........ ‘fnYn, (3)

.+ where the y denotes the pressure at the point. Indeed, at

any point. xm all f except fm are zero, fm = 1 and

hence F = ym..
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Fow, it is not necessary to actually form F. Let us sup-

pose that (3) be nom integrated yith respect to _dx. Then
,. ...

(4)
,.

It is gencra~ly assumed t-@ the length of the base (b - a) = 1

(sometimes 2). The multipliers are generally computed for this
.

case.

Hence we have arrived at the following

any spacing, equal or not:

In ozder to obtain the integral of the

result, applying to

curve of nth de-

gree passing thrGugh all n points giveq, we

each pre~sur~ Yn by a ITKLlt~PliCT~SZLY %,

is independent of the value of the pressures

. pends on the spacing of the pressure points.

the multipliers is

.

have to multiply

which cmltiplicr

Y, but only de-

The magnitude of

(5)

where Qin is given by equation (2).

The method can be followal whether the pressure changes its

sign in the interval considered or not, and whether the spaces

are equal or.noto

Cotesius considered only a spacimg (~ - x=)=(% - z );

X2 = a ; ~= b ; etc., and employed the method described. He
*

was the first to publish a table of the multipliers, H, for

a number of points n=-l to n=ll. This table is repro-

.



. .

.

duced as Table I in t’hispaper. Fo+ reason of symmetry, it is

sufficient to give only half of the factors, since

% = %-m (6).

The desired integral is

(%-x,)’ “Htyz+~y~+*.*... +Hnyn (7)

The inspection of Cotesiust table shows a characteristic

of Cotesius~ multipliers ,H which could not easily be antici-
..-

pated at first approaching the problem. Since the multipliers
. ..-_

depend on the spacing only, and the.spacing is constant, it

would not seem unlikely that the multipliers H become uniform- ““””

ly distributed along the interval, in that H has the largest

value in the middle and gradually falls off to the ends of the

interval. Such is by no means the case. On the contrary,.not

only are the differences of two adjacent multipliers of-vary-

ing sign, but even the multipliers themselves arc of varying

sign, some of them becoming negative ..forodd n. ..

,.

.
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“n I
2

3

4

5

~.,.

7

8

9

10

11

‘ ,$
..

-1

_19_
288

751
17,280

9E?9
28,350

16,067
59E,752

Table of Cotesius

3,57?
17,250

5,88$
28,350

15,741
~9,600

Xn-xz=l’

H
3

TABLE I

27
m

1.323
17,280

-928”
28,350

1.080
89,.500

●

2’72
m

2.989
17,280,,

10,495
28,350

19,344
89,600

-4.540
28,350

5,778
89,600

-260:550
598,752

%

427 358
598,752
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This characteristic of the multipliers for equal spacing

is in contradiction to the condition of not deviating too far

from the weigh% of the observed pressures, as discussed before.

~It really makes the method impractical, and Cotesiusl multi-

pliers are seldom used except for very small n. Cotesiuf3*

method has some merits for the computation of mathematical

tables, where the ordinates are not distorted by errors. It

has to be discarded, however, for tineintegration of empirical

observations as the pressure at equally spaced points.

Simpsonts* Rule and Generalizations Thereof

In its stead, the so-called Simpson!s rule has found a

wide application. lt.refers to an odd n only, w~~ch is ~

distinct disadvantage. Simpson divides the intervals of inte

gration into n ~ 1 parts. Zmh i~terval thus obtain~ is.

equally ?pc.d inta two parts, and Cotesius* Table for n = 3 ‘

is applied to it. Cotesiusl multipliers for n = 3 are in the

ratio 1 : 4.1. Adding, now, all integrals foz the ~
2 .

par%s of the intervals, the multipliers for the ends of adjac-

ent parts have”to be added. Hence Simpson!s multipliers are

in the ratio

n= s 1: 4:1 (Like Cotesius)

n= 51,:4:2:4:1

n= 71:4:2:4:2:4:1
eke.

--—

* Thomas Simpson, English mathematician, 1710-1761.
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~(Y1+4Y2+2Y~ +4y4+ ...... )
3

where a denotes the spate between two adjacent points.

Now, the imperfectness of SimpsonYs rule, namely, that

the adjacent factors differ in the ratio of 1 : 2, is the

direct consequence of treating each pair of adjacent points un-

symet rically. The entire base is divided into parts equal

to two spaces, and the ordinates at the ends of a space are

treated differently, according to whether they are locat@ at

the end or in the middle of a dcniblespace. Accordin@y, we . .,

can hope to improve the method.by treating all ordinates alike.

This can be done by consideri~ each space by itself, not the

* spaces in pairs.

The area over one space can be computed in first approxi-

mation from the values of the ordinatos at its ends, closing
8

the space by a straight line connecting the pressure points

at the ends of eaoh space (Fig..4). This procedure means a

repmted application of Co;esius’ method at each space with

n= 2. It would result in multipliers standing in a ratio

1’:2:2 . ...2.1. The probability of a reasonable ex-

aotness of such integration is not great enough, however. I

e would not recommend the general employment of this method for

the computation of the resultant force from the measurerflent

of pressures at a series of points equally spaced-
.
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Simpson improved the integral ovar onc space by taking into.

account not 9nly tho pressures at the ends, but also the pres-

sures at one rtorepoint, namely, the point next to the one at

one end of -thespace in

cesding that gives rise

multipliers. Hence the

i~ to take into account

question= It is this unsyrmqetricpro-

to the lack of uniformity of Simpson~s —

logical step to improve Simpsonls rule

additional pressures at points located

symmetrically with respect to the internal to be integrated.

It is equally logical to choose the number of these additional

points as 2, or of all points as 4, this being the snallcst

number of points admitting of a symmetrical arrangement. And _—
at last there is only one obvious way to select the two addi-

tional points; they arc the two adjacent to the ends, as shown
●

in Fig. 5. This can always be done except for the last space

in the interval. I propose using only one adjacent point for

the integration of the end interval, thus using Simpsonis rule.

for the two end i.ntcrv~lsonly. If there are only two interv-

als , or three points, Simpson!s zule and mine reduce to Cotcsi-

us multipliers for n = 3.

I proceed to the dctcr?ninationof the wltipliers and inte

~rate first over one interval not at t-heend. Let, fol ii-
.

stance, the length

* at the pGints ‘x=

degree to be drawn

of 3 spaces be 2, and let the ends be located

+1 and x = -1. Now, suppose a.curve of 3d

such that the ordinate y becomes zorc at

the psizts x = -1, -~, &nd +1, andy= 1 at the point x=+ .
. L,
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&
The equation of this curve is

By inserting

curve a:-:rees

between - *

.

.

(X2 _ 1)(X++

Y =-!-

,((
L\2 .
3)

1) (~ + *)

x = ~+1 or ~, it becomes evident that this .-

with the conditions laid down. Now integrate y

It C= directly be seen tkt the value ~f this integral.

would have become (~ y) in case y. would have been Y3

instead of 1 at the pcint x = + ~ ●
For the curve to be inte

a grated would have agreed with the one actually intograted, ex-

cept for the constant factor ~Z. The area i~ therefore -.

~Y39 or written as t“~e product of the value Y39 the base
.

length c(= ~- and a constant factor, the integral i.s .-

13cY3g

The symmetry of the problem shows further, that the integral of

a similar curves ~ving the ordinate Y= at the point —

-.~ X ~ WOUld be
3

CY2=
24

The SL?perpOSition of the two curves gives one ‘vi~% ‘hc ....

. ordinates zero at the two adjaccnt points and having the ordi-
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mtes y2 and YS at t-hetwo er.dsof’the integrs,tion..

It is possible to compute the multipliers for the adjacent

points 1 and 3 in a like way. They follow much more simply .

from the consideration that for equal ordinates yl = yz = y~ =

Y4 the c.reamust come out ‘c yl, and that the tWO llKlltiplierS

for the adjacent points rndstbe equal for reason of symmetry.

Hence, counting now alS.four curves, we obtain one passing

through points with ordinates yl to y~ at x = +1.5 c, 5.5 c.

The integral of this cuwe, along the middle interval is

I pass now ttian end interval, Let the base extend from

-l”to +1, and the integral from o to +1. The parabola with
.

Y~ ‘LY2= 0s Y~ = 1 ‘hm the equation y = (1 - X2) the inte-
%

gral of which is

. /’(1 - X2) dx = :.

Now, C=l and hence the area becomes

Likewise, let the parabola have the ordinates yl = Ya = G,

Y~ = 1, giving the equation yl = ~ (Xa + x) and the integral

+J1(X2 + x} dx .+ Lx Z=+&
Uo 26 I-2

The area is
1

-&yac
●
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Finally, let y= = 1, y= = Y. = 0,

hence, the general formla

dx =-—:2 Y1 c

for the integrals.

*

Area = c
(,
+2y3 ~+8y2 -& Yl>.

12

25

As expected, this gives YI c in case that YI = Ya = ya ●

I am now enabled to write down the multipliers for the gen-

eral case of n points with eqval spacing, by adding the int@

grals over all single intervals:

For’instance, for n = 6

1st interval 5/12.

2d II -1/24

3d 1! ,

4th ‘1

5th ‘f

Sum 9/24

1

J-
13/24, 13/24

-1/24 13/24

-1/24

28/24 ~ 23/24

2 iz

-1/24

13/24

13/24

-1/12

23/24

4

,~. ~ ,-. , “.- ,=-“ .,<..--.-:.i-”“’-L.z
- ., ●:..

#.)*“ ~“. A ,, -.. - +%,..;~. ..... --

13/24

8/12

“2Q/24

5

.-

-1/24 ‘

45/129/24

6!

.
.-
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TABLE 11

Improved Multipliers H for Equal Spacingc .

n = 2 (Cotesius) Hz = ~,

n= 3 (Cotesius and Simpson)

.

Area = c(Hlyl +H2 y2 + ● . ● . ● . + ~n Yn)

The preceding table is to be used in the same way as Si.mp-

son~s; the ordinates are to be multiplied by their respective

multiplier,

and the sum

This holds,

of course a

Si~ has tO

the products so obtained are to be added together

has.to be multiplied by the length of one space”.

no mqtter what the signs of the ordinates are, but

negative ordinate gives a negatiye product and ti~is

be given attention when adding up all products.
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hltipliers for Arbitrary Spacing

27

.

The fcmgoing nethod can be cxtaded

A@in, a parabola of third degree can be

to an arbitrary spac~ng: ._..

imagined to be drmn

through four consecutive points and the area of the middle seo–

tion ‘PCobtained by integration. I omit the simple computation

and Sivc only tho result. Let a, b, c be,%he length of three ——-

consecu+ivc spacest Then the area over the middle s~ce b be .

comes

Area = & b2 + Zbc +-4ab + 6ac b ~+2ab+4bc+6acy=
(C + b) a Y2+~ (a + b) c

b b3 + 2a&
(b+c)cy4-&

b3+2@c
-z (a+ b+c) 12(a+b+c) (b + a)a

(8)

The first and last -sections are integrated by choosing

the parabola through the first three or last three points as
.

boundary 1ine●

The area results .

Each of the single areas has to be expressed by means of these

formulas (8) and (9) as sums of the ordinates y, each multi-

.
plied by .anumerical constant, and all these expressions have

*
to be added, giving in each cusc a series of ~ltipliers to be

used as in all cases discussed before.
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The computation of the multipliers, though by no moms dif-

ficult, is laborious, cnd it is always prcfcrablc to distribute

the grcssuro holes systematically and to use standard tables
.

rather than tables nnde up for the special occasion.

Gmlssl

Proceeding now to

Method of Integration

unequal but systematic spacing, there

has first to be mentioned the method of Gauss.* This method

has the immense advantage of a uniform variation of the ~lti- .

pliers. This uniformity will also be maintained for all distri-

butions derived from GaussT method.

@uss himself stressed chiefly the point of hignost accura-

cy with a qiv”ennumber of ordinates in conjunction with the met”n-
.

ods not directly depending on the values of the ordimtes. The

general method is quite analogous to Cotosiusl method and the

. other methods discussed.

multipliers, which latter

ucts are ti~~ added. The

Each ordinate is multiplied by its

depends on the spacing only. All prod~ _

multipliers ~re again computed by in-

tegrating the curve of (n - l)th degree having the ordi~tes ._

Yl=Y2=–--Yi=Ym+z+z ‘-–---=yn=o and ym=l*

The variation left consists therefore in the spacing of th$

ordinates used. Gauss thought chiefly of the integration of
b

mathematical functions and supposed them to be well approximated

by a series of terms of powers of Xj

b * Karl Friedrich Gauss, Geman mthemtician, 1777-1855”
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. ~+ Alx+A, xa-f-etc. (10)

Now, if there would only be ‘ n. terms in the expression,(10)

every method of integration of this kind wpuld be absolutely
m.

exact, since then the curve of nth .degree would coincide with .-

the curve to be integrated. Gauss proposes to select the spat- _

ing in yuch-a way that the integration would also be exact for
.—

the next n terms of the series (10). A short reflection will ‘

.Show that this is equivalent to the condition that all curves

passing through the base points and being of a degree not ..+:—.

high& t’han n have the integ~al zero. Their addition to any

curve would not change ,theordipatcs in question and’hence

would.not change the integral. This gives n cquatims for ‘

. the computation of the n abscissae.

Gauss has computed the abscissae and multipliers up to

n= 7. In Table 111, these values ~.rereproduced and further
.

the values for n = 8 to n = 12, as computed for this paper

by Dr. Paul E, Hcmkc, an American mathematician and member of-.,.

the technical staff of the National Advi~ory Committee for

.

.
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TABLE 111

Base length= 1

n = 1
xi = 0.5 Iil=l

n= 2
xl = 0.21”682 Hz = O*5

n=3
xl = 0.11270 = 5/18 = 0.2777
x-2 = 0.5 : =8/18 = 0.4444

n= 4
xl = 0.11’343 HI = 0.1?393
X2 “=0.33009 Ha = 0.32607

a
n=5

xl = 0.04691 12~= 0.11846

X2 = 0.23077 HZ = omZJ3931

X3 “.o ● 500C0 H3 = 0.28444

XA = 0.76923 H* = G,23931

x= = 0.95307 H5 = 0.11846

. n=6
Xl = 0.033765 HI = 0.095662

X2 = 0.16940 E~ = 0.1.8038

I& = 0.38069 H~ = 0.23396

X5 = 0.83060 ,IG~ H~ = 0.18038

Xe = 0.96623 .O~* H= = 0.085662
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x-1 = ().02!5446

X2 = 0.12923

X3 = 0.29708

X4 = 0.50000

X5 = 0.7C292

X6 = 0.87077

X7 = 0.97455’

x~ = 0.019855

& = o ● 7.C’3.37

X3 = 0.23723
.

X4 = 0.4G828

Y~s = 0.59172
.

X6 = 0.76277

Xv = 0.8S833

x~ = 0.98015

xl = 0.015920

Y‘2 = !3.081985

X3 = 0.19331

0.33797x#&=

X5 = 0.50000

X6 = 0.6E213

Table 111 (Cont.)

n= 7
HI = 0.064742

I& = 0.13985

H3 = 0.19092

H* = 0.20898

H~ = 0.19092

I& = 0,13985

Hv = 0.064742

n= 8
HI = 0,050614.

& = C,15685

E& = C.18134

31

H5 = 0.18134

& = 0,15685

= 0.11119 -E7, .

H= = 0.050614

n = 9
HI = 0.040637

Hz = 0.090324

H3 = 0.13031

HA = 0.1561~

H5 = 0.16512

He = 0.15617

H7 = 0.13031

E* = C.090324
11== 0.040637

.

.
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,.

xl = 0.01304”7

X2 = 0s067469

X3 = 0.16030

Y~4 = 0.28330

X5 = 0.42556

x= = 0057’444

xv = 0.71670

Xe =0.85971

X9 = 0.93253

~lo= (3.98695
.

xl = 0.010886 .

Xa = 0.C56469

vAL3= 0.13492

X4 = 0.24045

. X5 =.0=36523..r

x= = Q ● 50000

xv = 0.63477

X8 =“0.75955,.
YrA9 = 0.86508

x10 = 0.94353

Xll= 0.S8911,

Table 111 (Cont.)

n= 10
Ill= 0.033336

Ha = 0.074729

H3 = 0.10954

F14 = 0.13463

HS = 0.14776

HG = 0:14776

Hv = 0?13463

H* = 0.10954

Ii9 = 0.074729

H to = 0.033336

32

n= 11
HI = 0:027839 ‘

= 0.062795Hz .

I& = 0.093150

l+i~= 0.11658

X5 = o*13141

He = 0.13646

H7 ,,=0.13141

= 0.11658H8 ,

H9 = 0.093150

HIO= 0.962795

Hll= 0.02’7839

.—
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Table 111 (Cont.)
w

n= 12
X3 = 0.0092195 %. = 0,023588

X2 = 0,047942

v.L3 = 0.11505

X4 = 0.20634

X5 = 0.31508

Hz = 0,053470

Hs = 0.08C039

H~ = 0.11675

X6 = 0.43738 ‘& = 0.12457

Xv = 0.56262 H, = 0.12457

Xe = 0.68392 HS =-0.11675

XS = 0.79366 H~ = 0,10158

x – 0,8849510 ‘“ 0,080039Hlo=

Xll= 0.95206 HI~= 0,053470

Xla= 0.990% H12= 0.0R3588
.

Taking up npw:thc question of exactness, it seems sound to

expect a smll probable error from Gauss’ method. The question

cannot bo answered direvtly, as integrating curves determined
.

by single points that are empirically found is quite another

thing t’hanintegrating a mathen%tical functiofl. No @fe critcr-

i’oncan ‘DCgiven in the former case except that one can discuss

a more or I.essprobable exactness. It should, however, be

borne in nind that even for the integration of ma.themtical

functions, Gauss! method is exact for 2n terms in powers of
●

—

x.

in

.

Tb-epower series, however, is by riomeans the only one, nor

any way particularly didingUiEh~ frOm an @CpansiOn Of a
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function into a series ~rogressing in terms of some other func-
. ..—

tions. For any kind of expansion we can compute a distribution

of points such that the integr-ationis exact for 2n terms of

such series. In general, thiS gi~e~ distributions different

fron GauQs~. As a consequemco, the multipliers will be differ-

ent, too. No criterion has come to Ey knowledge,deciding which

of such eq~nsions gives the Most exact results, and probably

this question cannot be answered at all but depends on the

f~nction to be integrated. We have arrived at a probability

problem of a very general kind.

Since the powers of x (parabolas) Fave played the most

important part in modern mathematics, it will probably be wisest

to follow so gzeat and eminent a ~,anas Yarl Friederich Gauss,

9 and to adopt his me$hod for the general case as the most exact

one. A slight variation does not produce any large difference
.

of the result any way. Eesides, the chief advantage is the

.

uniformity of the multipliers rat-herthan the large exactness.

It should now be clearly understood that Gauss recommended

this method under the condition that the probability of the ma=

nitude.of the ordinates he equal along the entire range of int~

—

.. . —

—.

....

gration. In our case, this would be the case if the resultant

pressure is measured along a

s~rfa~e of the aircraft, not
.

which the resulting pressure

line over a limited portion of the ___

extending to the edge or end, at

is primrily zero. Moreover,

nothing would be known beforehand about the ~’ypeof pressure
●
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distribution to-be expected. In ~Ucllcases, Gauss!(and HemkeIs)
w .

spating and,

sower.

Spacing

In many

aircraft, or

multipliers can be used without notification What-

for Special Types of Pressure Distribution

case8, where the line reaches up to ariedge of the

through it (as the wing chord, or the diameter Gf ._

a round airship hull, for instance), the resulting prmsure is —

sure to be zero at the two ends of the line. This case is GO

general with investigation of.pressure distribution, t.kt it is . .=

worth while to conside~ it separately. It pays to modify the

Gauss table for this case. The proceeding is somewlx-.tarbitxry.

Two methods suggest themselv~s at first glance, the first of

which will seefiinferior to t’hesecond z.tcloser cxanination.
8

In the first instance, Gauss! method could be generalized

in such a way that two abscissae ~.regiven; in this case two

. zero ends. G other points are to be com@utcd so that the in-”

tegration becomes exact for n additional $orms of the power __

series.

I prefer another \Yay,which leads to different remits.

The problem as stated just before involves only a vanishing z-

sultant pressure at the ends, but it does not includ.cthe re

sultanh prce~ure to be small near these ends. I prefer select- -.

a ing a probability or weight function along the entixe range, .-..

giving zero at the ends. A convenient weigiltfunction is

Cos 1-rA. Let the base extend between the points x = +1 and p. 2
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9 denote the pressure. Then write

P= Cos m~”q(x) .@(x) = F
Cos ‘n~

2

WC have to int egrete

I insert now sin n ~ for x in Gauss! tables, obtaining new

abscissae. ,The multipliers with respect to @ (x) remain un-

altered. But since q (~~)sinn ~ are Tnmsurd; the ~ltiPli_
2

ers arc cqud to H = 2 Ho -and can then directly be ap-
n sinn .$

—

plied to the va>ues of the p~cssures, that is, the new X. and

H are to bc used in the same way as before. Table IV givgs
●

—

the modified Gnuss-Hcmkc Table, for the length 2 of the base:
. .

They are computed by “Dr.Hemke for this ‘paper. .. ‘

‘TABLE IV. ..-

4
n= 5

xl = -o ● ‘?2202 HZ = 0.35666

X2 = -0.36200 Ha = 0.36160

X3=o <f:4 = 0.36217

X.4= 0.36200 H4 =,0.36160

X6 = 0.72202 H5 = 0.35666

b.
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*
Table IV (Cont.)

n =

xl =
6

-o*76470 % = 0.30191

X2 = -O.4=92 ‘ HZ = 0.30614

:“:3= -o.15338 I&l= 0,306’74

X4 = 0.15338 ‘HA= 0.30674

X5 = o,45992 H= = 0.30614

x= = 0.76470 & = 0.30291

n= ‘7
X= = -0.79602 Hz = 0.261’?2

Xa = -0.53180

X3 = -0.26604

x~=()

X5 = 0.26604

x= = ().531go

xv = 0.75602

n=8
xl ==-0.820Q0

X2 = -0,586S2

x3 = -0.35226

X4 = -O*11744

x5 = o*11744

x= = 0.35226

X7=” O.58682

X3= 0*82GO0

Hz = 0.2654-0 ‘

E& = 0.26597

HA = 0.26608

H~ = 0.26597

H= = 0.26540

F&+= 0.26172

HI = 0.23099

FIz= 0.23423

Ii== 0.23488

% = 0.23474

% = 0.23423

zI~= 0.23099

-.

.
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Table IV (Cont.)

n.= 9
xl = -0.83891 “Hl= 0.20668

X2 = -0.63026 ?32= 0020984

X3 = -0.42038 H~ = 0.21007

X4 = -0.21022 HA = 0:21021

x~=o & = 0.21024

x==. 0.21C22 H= = 0.21021

xv = 0.42038 Hv = O.2zO~7

X8 = 0.63026 H~ =0.20984

38 —

h= 0.83891 ‘& = 0.20668

n=10
Xl = -0.85427 HI = 0.18706

X2 ==-0.66544 H2 = 0.18966

X3= -0.47552 H= = 0.19008

X4 =.–0.38648 li~= 0.19022

x= = -0.09512 H= = 0.19026

X6 = 0.09512 H= = 0.19026

X7= 0.28538 & = 0:19022

X8 = o,~?ssz 1%= 0.19008

X9 = 0.66544 He = 0,18966

Lo = 0.85427 HIO= 0.18706

n= 11
~1= -0.86691 HZ = 0.17077

X2 = -o +69450 & = 0.17317

h = -0.52110 & = 0.1?354
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● Table IV (Conf.)

n = 11
x4 = :0.3474s HA = 0.1’?365

X5 = -0.17’374 & = 0.17373

x7 = 0.17’374 Hv = 0.1’73?3

X* = ()*34746 He = 0.1?355

XS = 0.52110 & = 0.17354

x~~= 0.69450 HIO= 0.17317
.

x11= 0.86691 H~~= 0.17077

n= 12
xl = -0.8’7757 HI = 0.15714

Xz = -0.71894 & = 0.15933

X3 = -0.55939 I& = 0.15969

X4 = -0..39964 HA = 0.15981

x5 = -0.23980 H5 = 0.15985

X6 = -0.07994 H= = 0.1598’7

xv = ‘“0.07994 % = 0.15987

X8 = 0.23980 .: He = 0.15985

‘X9= 0.39964 Hg = 0.15981

HIO= O~15969

xl,= 0.71s94 H~~= 0.15933

x12 = 0.87757 He= 0.15714,
*

A second r~odificationof the Gauss table refers to the

.heasurementot the resultant pressure distribution along a wing

. .
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chord. It is known that the resultant pressure distribution ,

along a chord is chiefly concentrated nfi~rthe leading edge . ___
.

● with most practical sections.

A weight function (sinn x cos ~) was chosen by Dr.

Hemke. The procedure leads to Table V, likewise computed by

Dr. Hemke. The leading.edge is at t.he’sidewhere the spacing

is nar:owj that is, x

xx = 0.34630
.

& = 0.59533

X3 = 0.77938

b X4 = 0.90889
‘)

X5 = !).9/?253
-

. xl = c).31001

X2 = 0.53536

X~ = 0.70820

.& = 0.84098 .I~

x= = 0.98748 .$l~
..

xl = 0.28190

X2= = 0.48609

= 1, ~hc-trailing e~gc being at x = G.

TABLE V.

Base length = 1.

n=5
HI = 0.29473

& = 0.21273

& = 0.15658

H4 = 0.10208

‘~ = Ow044724

n= 6
% = 0.26449

T& = 0.19516

I&3= 0.15212

& = 0.11330

% = 0,073617

& = 0.032084

n= ‘7
HI = 0.24083

Ha = 0.18000 ~

G = 0.14479
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X5 = 0.8’7986
f

x~ = o.9506~

x7 = 0.99059

●

4

xl = 0.25938 ?@

X2 = 0.44934 irrl

X3 = 0.60103 .3’$q

X4 = 0.72576 ,274

X5 = o.e2733 .173

X6 = 0.’30612 in+

X7 = 0.9E151 ,93f

x-e = 0.99266 .JUV

xl = 0.24086

X2 = 0.4,1818

x= = 0.66015

x4 = O c6’7934

X5 = 0.7?938

X6 = 0.86120

xv = 0.92464

v-~s= 0.96915

Xg = 0.99413

Table V (Cont.,)

n= 7
Ha = 0.11504

I& = 0.085816

IIe= 0.055561

HV = 0.024140

I&!= 0.1’6709

& = 0s13701

& = O.11294

Hs ‘-0.090232 “-

E= = 0.067232

Eq = 0.043400

Ha = 0.01!3812

n= 9
H~ = 0.20604

J& = ,0.15607

& = 0.12960

H4 = 0,10932

H5 = 0.090897

% = 0.072705

H7 = O*054079

H* = O ● 034827

H9 = 0.015070

.
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b

.

X3 = 0.22!532,~~~

X2 = 0.39149 .60$

X3 = 0.52533 .q>$

X4 = 0.63903 .2L(

& = 0.73639 .2#T-

X= = 0.81865 ,Irl:

X7 = 0.S8602 .//+

X* = oc9381$3 ,~$~

Xg = 0.974-72 ~’r

x~~= 0.99518 ,4]$.5

xl = 0.21202

X2 = 0.368s5

xi= 0.49531

X4 = 0.60381

X5 = o,69~02

XG = 0.77938

Xv = 0.84S31

x= = 0.90475

%’ o..94&3El

Xlc= 0.978S0

XII= 0.99598

Table V (Cont.)

n= 10
% = 0.19281

Ez = 0,14658

I-II= 0.12278

H~ = 0.10518

F+ = 0.099719

E= = 0.074835

117 = 0.05’3835

I% = 0.04-4430

& = 0.028560

Hzo= 0.012343

II = 11
Hz = 0.19153

& = 0.13337

F* = 0.087653

Ek = 0.075122

& = 0.062717

Ek = 0.050091

& = 0.037145

%1= 0,010295

42
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Table V (Oont.)

n =12
xl = 0.20060 H, = 0.17171

Xa = 0.34884 H2 = 0.13115

x3 = 0.46914 H~ = 0.11104

X4 = 0.57283

X5 = 0.663?8

X6 = (3.74351

X7 = 0.81263

Xs = 0.87125

X9 = 0.91922

Xm= G.95Z27

Xll= 0.95(527: ,~[~7
}

x= = o.99ull

H* = 0.096930

Hs = 0.0s5179

~6 = 0.074384

% = 0.063880

H* = 0.053326

I& = 0.042556

IizO=0.031508

H~~= 0.020199

E= = C.01387146

Tables for Pressure Distribution Around a Circle

A particular distribution of the abscissae, neither con-

stant nor deri-vedfrom Gr.uss’rdle, is the projection of points

equally spaced around a circle with the base as diameter. This

occurs when measuring the pressure distribution over the sur-
4 .

face of a round airship hll. For reas’onsof symmetry, only
..

4, 8, 12, 16, etc., points are of interesi. The base can pass

one of the points or be symmetrical to two points of intersect-
b

ing points.

Dr. Hemke has cormmted the multipliers for these two cases

und~ the assumption that at the ends the resultant pressure is.

I
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zero. T-heremits arc given in Tables VI and VII.
b

TABLE VI.

n = rmnber of points in circlo of unit radius.

m = n~nber of projections on the diameter.

Xk = abscissae of projections on diameter.

(a) n=4. n=3

xl = -1 = -x3

. .
X2=. O

(b) n =8. N=5

X2 = -.70711 = -q

%= .80000

(c) n =1.2. ,m=7

xl = -1 = -%

=-% -.86603 = -X6

%’ - *530m = -Y5

X4=0



Hz = .02857 = Hv
●

ha = .25397 = H=

X4 = .52064 ‘

(d) n =16, m=9

xl = -~ = –~~

X2 = -.923~8 = –Xe

x3 = -.70711 = -X7

x4 = -.3S!268= -~

Xs=o

Hz = c01587 = %

E2 = .14622 = H=

15~= .27937 = H7

HA = .361’72= EG

KS = .33364

TABLE VII.

(a) n=4. m=z

xl ==-.70711 = -x2

El =:=%

(b) ~ =8, m=~

xl = -.92388 = -x4

X2 = -.38268 = -~

:7 =.41 S34!477= H=

Hs = .72190 = H4

4!5
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(c) n =12+ m=6

xl = -.96593 = -X6

X2 = -.’70711= -X5

x3 = -.25882 s -X4

q = .15420 = H=

E& = .36825 = 135

PI = .50611 = E~

(d) n =16. m=8

xl = -.98079 = -X*

X2 = -;83147 = -~

x3 = T .55557 = -~

X4= -.19508 ‘ –Xs

E!= .21705 = l?+

Fe = .32680 = E!%

1-14= .38509 = &

It is seen that for such distribution tho multipliers become uni–
-

form again.

Before closing this section, I wish to make one remrk on

Tchebychefflsx method of integration. He distributes the points

so as to obtain the multipliers = 1, This is in use in naval

architecture, but not for the measurements indicated in the
$

subject of this paper. T/ehave to perform so many algebraic

operations before obtaining tho pressure point, that one.more
—
* Tchcbycheff, Russian rathcmt ician, 1$321-1894..

—
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ritter. Greater exactness should not . ._

one multiplication per pressure observed.

T&LE VIII.

Tchebycheff~s Table.

n

2 0.5773

3 0 0.7071

4 0.1876 0.7947

5 0 0.3745 0.8325

6 0.2666 0.4225 0.8662

7 0 0.3239 0.5797 g.8839 .

9 0 0.1697 0.5288 0.6010 0.9116
*

Conclusion

The tables, given for the integration of the pressure, can

- also be used for the co~~tation of functions of the ;bserved

pressure, as, for instance, for the computation of the static

moment of “theresultant air force with respect to some axis.

The function of each obse”lvedpres~re rather than the pres-

sure itself has to be multipli~ by the multipliers and the

products addc-d.

The ChOiCC of the family of curves along which the Pressure .

J holes are arranged should follow the same ~les aS just given. ._

for the single points. Tho probloms arc indeed identical. For
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-a instance, the span of a wing can be dividedby the use of Table

111, and then ~ch chart speed

If the wing is not rectangular,

can be divided according to Tabl

in accordance with Table LT.

the area rather t-banthe span

e 111.

Similarly, in the airship hulls, circles mill be the pri-

m<arycurves, and equal spacing is recommendable because both

pitching and yawing will generally be investigated. The aXiS ._

cm be divid”d again ‘oydividing the lateral projected area

according to Table 111.

No general rules can be given for other cases, but the id-.

vestiga%r should be sufficiently familiar with the principles

of integration and of the tables presentejiin this paper to

select the spacing with common sense and with careful judgment. ._L
b

There is ofton more than one good distribution of pressure ori-

fices; the choice between several good distributions is then.a ._

m ~%tter of taste and Gf intuition, and the choice of an unsyste-
.

matic distribution with no special advantage should not be

tolerated.

b
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